

Practical Examination

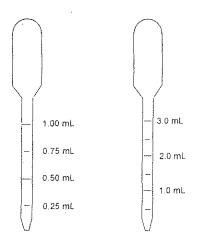
44th International Chemistry Olympiad July 24, 2012 United States of America

Инструкция (Задача 1)

- Буклет «Задача 1» включает 10 листов.
- У Вас есть 15 минут до начала экспериментальной работы, чтобы полностью прочитать буклет «Задача 1».
- На выполнение Задачи 1 Вам отводится 2 часа 15 минут.
- Начинайте работу только после того, как прозвучит команда **START**. Вы должны немедленно прекратить работу после команды **STOP**. Если Вы продолжите работу в течение 5 минут после этого, Вы будете дисквалифицированы с нулевым результатом за весь экспериментальный тур. Вы должны оставаться на своем рабочем месте после команды **STOP**. Преподаватель подойдет к Вам и проверит рабочий стол. Вы должны оставить на столе буклет «Задача 1» с заданиями и ответами.
- Вы обязаны соблюдать **правила техники безопасности**, принятые на МХО. Находять в лаборатории, Вы должны постоянно носить защитные **очки** или Ваши собственные **очки**. При работе Вы можете использовать **перчатки**.
- При нарушении правил техники безопасности Вы получите только **ОДНО ПРЕДУПРЕЖДЕНИЕ**. При повторном нарушении Вы будете удалены из лаборатории с нулевым результатом за весь практический тур.
- Если у Вас возникли вопросы по технике безопасности или Вам нужно выйти в туалет, обратитесь к Вашему преподавателю.
- Вам разрешается работать только на своем рабочем месте.
- Записывайте ответы только выданной Вам ручкой. Не пишите карандашом.
- Используйте только выданный Вам калькулятор.
- Записывайте результаты только в отведенных для этого местах. Любые записи, сделанные в других местах, оцениваться не будут. Используйте оборотную сторону листов в качестве черновика.
- Выбрасывайте закрытые пузырьки с остатками растворов в контейнер подписанный "Used Vials".
- Выливайте не нужные более растворы в контейнер, подписанный "Liquid Waste"..
- Выбрасывайте осколки ампулы в контейнер, подписанный "Broken Glass Disposal".
- Вы можете заменить посуду или получить дополнительные реактивы без штрафа только один раз. За каждую последующую замену Вы будете оштрафованы 1 баллом из 40. Получение дополнительной порции ацетона-d₆ всегда штрафуется одним баллом.
- В любой момент Вы можете попросить у преподавателя официальную английскую версию для уточнения непонятных формулировок.

Реактивы и оборудование (Задача 1)

Реактивы (жирным шрифтом в таблице выделены подписи на этикетках)


	R-фразы⁺	Ѕ-фразы⁺
~2 М HCl, [*] водный раствор, 50 мл в	R34, R37	S26, S45
бутылочке		
~0.01 М KI ₃ , [*] водный раствор, 10 мл в		
пузырьке, подписанном "I ₂ ".		
Ацетон, (CH ₃) ₂ CO, M = 58.08 г/моль,	R11, R36, R66, R67	S9, S16, S26
плотность = 0.791 г/мл, 10.0 мл в пузырьке		
Ацетон- <i>d</i> ₆ , (CD ₃) ₂ CO, M = 64.12 г/моль,	R11, R36, R66, R67	S9, S16, S26
плотность = 0.872 г/мл, 3.0 мл в ампуле		

⁺ Расшифровку R- и S-фраз смотрите далее.

* Точная концентрация приведена на этикетке.

Оборудование - Kit #1

- Одна стеклянная бутылочка с дистиллированной водой
- 15 стеклянных пузырьков на 20 мл с завинчивающимися крышками
- 10 пластиковых пипеток на 1 мл с делениями по 0.25 мл (mL) для перенесения жидкости (см. рис.).
- 10 пластиковых пипеток на 3 мл с делениями по 0.50 мл
 (mL) для перенесения жидкости (см. рис.).
- Цифровой секундомер

Фамилия:

R-и S-фразы (Задача 1)

R11 Легковоспламеняющийся

R34 Вызывает ожоги

R36 Вызывает раздражение глаз

R37 Вызывает раздражение органов дыхания

R66 Постоянный контакт может вызвать растрескивание кожи

R67 Пары вызывают сонливость и головокружение

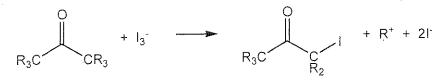
S9 Хранить в хорошо проветриваемом помещении

S16 Хранить в стороне от источников воспламенения

S26 В случае попадания в глаза немедленно промойте большим количеством воды и обратитесь к врачу

S45 При несчастном случае и/или плохом самочувствии немедленно обратитесь к врачу

Задача 1


18 баллов

a	b	c	d	e	f	g	очки	баллы
10	2	10	12	16	12	8	70	18

Кинетика, изотопный эффект и механизм реакции иодирования ацетона

Для изучения механизмов реакций часто используют кинетические данные в сочетании с изотопным эффектом. Хотя изотопно-замещенные молекулы проявляют схожие химические свойства, скорости реакций могут различаться.

В этой задаче вы изучите кинетику и изотопный эффект в реакции иодирования ацетона в кислой среде:

R = H or D

Кинетическое уравнение для данной реакции имеет вид:

$$r = k[auetoH]^m [I_3]^n [H^+]^p$$
.

В этом уравнении вы должны определить константу скорости k и целочисленные порядки реакции по веществам m, n и p. Вам также будет необходимо сравнить скорости реакций с участием обычного ацетона и дейтерозамещенного ацетона- d_6 , в котором все 6 атомов ¹Н замещены на дейтерий D, и определить величину изотопного эффекта реакции $k_{\rm H}/k_{\rm D}$. Все эти данные будут использованы для выяснения механизма реакции.

Важно: прежде, чем начать работу, прочитайте все задание целиком и составьте план работы.

<u>Методика</u>

Скорость реакции зависит от температуры. Спросите у лаборанта, какова температура в том месте, где вы работаете, и запишите ее:

Инструкции по использованию цифрового секундомера

(1) Нажимайте кнопку [MODE], пока не появится надпись COUNT UP.

- (2) Для запуска секундомера нажмите кнопку [START/STOP].
- (3) Для остановки секундомера снова нажмите кнопку [START/STOP].
- (4) Для сброса данных и очистки дисплея нажмите кнопку [CLEAR].

Порядок работы

В ходе данного эксперимента начальные концентрации реагентов в реакционной смеси должны находиться в следующем диапазоне (необязательно исследовать весь диапазон):

[H⁺]: от 0.2 М до 1.0 М

[І₃⁻]: от 0.0005 М до 0.002 М

[ацетон]: от 0.5 М до 1.5 М

Пластиковыми пипетками перенесите запланированные вами объемы соляной кислоты, дистиллированной воды и раствора KI₃ (обозначенного "I₂") в реакционный сосуд.

Для того, чтобы начать реакцию, добавьте выбранный вами объем ацетона к приготовленной смеси остальных реагентов, сразу закройте реакционный сосуд пробкой, включите секундомер, быстро встряхните сосуд один раз и поставьте сосуд на белый фон. Запишите использованные объемы реагентов в таблицу в п. (а). Пока идет реакция, не прикасайтесь к сосуду ниже уровня жидкости в нем. Об окончании реакции свидетельствует исчезновение коричневой окраски трииодид-иона. Остановите секундомер в момент исчезновения окраски и запишите в таблицу время протекания реакции. Когда реакция закончится, отставьте в сторону сосуд, не открывая его, чтобы не дышать парами иодоацетона.

Повторите эту процедуру с различными концентрациями реагентов необходимое число раз. Рассчитайте концентрации реагентов в каждом опыте и занесите результаты в таблицу в п. (с).

Фамилия:

Указание: в каждом опыте меняйте только одну концентрацию по сравнению с предыдущим опытом.

После того, как вы исследовали скорость иодирования обычного ацетона, необходимо измерить скорость реакции иодирования дейтерозамещенного ацетона-*d*₆. Обратите внимание, что ввиду высокой стоимости вещества, вам выдано только 3.0 мл ацетона-*d*₆. Вы можете попросить дополнительное количество вещества, но за это с вас снимут один балл.

Когда вы захотите начать работу с этим веществом, поднимите руку и старший преподаватель вскроет для вас ампулу с ацетоном- d_6 . Реакции с дейтерозамещенными веществами, как правило, протекают медленнее, чем с обычными, поэтому рекомендуем вам при работе с (CD₃)₂CO использовать такие концентрации, при которых реакция протекает достаточно быстро.

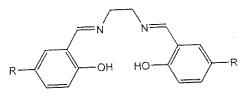
После окончания работы:

- вылейте всю воду из бутылки и положите ее вместе со всем неиспользованным оборудованием в коробку с надписью "Kit #1";
- b) положите использованные пипетки и закрытые реакционные сосуды в соответствующие контейнеры под тягами;
- с) остатки ампулы из-под дейтероацетона выбросьте в контейнер с надписью «Broken Glass Disposal».

Убрать рабочее место можно и после команды STOP.

Фамилия:

and the second second


Задача 2

22 балла

Синтез комплекса марганца с лигандом salen и определение формулы продукта

	A B-i	B-ii C-	i <u>C-ii</u>	<u>Очки</u>	Баллы
	10 15	4 4	2	35	22
1				-dev - second - dev	

Комплексы ионов 3*d*-металлов с лигандом бис(салицилиден)этилендиамином (salen) используются в органическом синтезе как эффективные катализаторы разнообразных окислительно-восстановительных реакций.

(salen)H₂, R = H (salen*)H₂, R = H, или СООН, или SO₃H

В комплексах с salen стабилизируются различные степени окисления 3*d*-элементов. В частности, в зависимости от условий реакции получения, ионы марганца могут иметь степени окисления от +2 до +5.

В этой задаче вы должны синтезировать комплекс ионов марганца с salen по реакции ацетата Mn(II) с (salen)H₂ в этаноле на воздухе в присутствии LiCl. В таких условиях вы можете получить комплекс состава (salen)MnCl_x, где х может принимать значения 0, 1, 2 или 3.

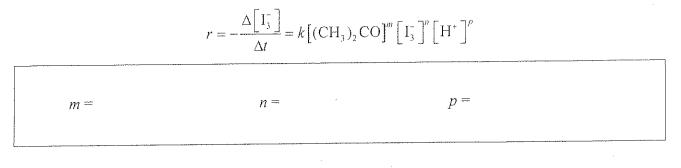
Вам потребуется: i) определить массу полученного продукта, ii) с помощью TCX охарактеризовать его чистоту и iii) определить степень окисления марганца в комплексе с использованием йодометрического окислительно-восстановительного титрования. Для титрования вы будете использовать раствор выданного Вам комплекса, являющегося аналогом вашего продукта, (salen*)MnCl_x, в котором марганец имеет такую же степень окисления, что и вашем продукте, а заместителем R в бензольных кольцах может быть H, СООН или SO₃H.

Код: BLF

с. В таблицах ниже запишите результаты расчета концентраций реагентов и соответствующих скоростей реакций. Считайте, что объем реакционной смеси равен сумме объемов смешанных жидкостей. Для последующего расчета констант скорости $k_{\rm H}$ и $k_{\rm D}$ (в пунктах с и f) вам необязательно использовать данные всех опытов, но вы должны указать галочкой в последнем столбце таблицы, использовали вы данный опыт при расчете или не использовали.

(CH₃)₂CO:

Номер опыта	Начальная [H ⁺], М	Начальная [І ₃ ¯], М	Начальная [(CH ₃) ₂ CO], М	Средняя скорость расходования І ₃ -, М с ⁻¹	Использовали ли вы данный опыт при расчете k _H ? Да Нет
1			1		
2				· · · · · · · · · · · · · · · · · · ·	
3					
4					
5					
6					
7					
8					


(CD₃)₂CO:

Номер опыта	Начальная [H ⁺], М	Начальная [I ₃], М	Начальная [(CD ₃) ₂ CO], М	Средняя скорость расходования I ₃ ⁻ , M ⁻ c ⁻¹	Использовали ли вы данный опыт при расчете k _D ? Да Нет
1d					
2d					
3d					
4d					

44^{ая} МХО – Экспериментальный тур.

Фамилия:

d. Запишите целочисленные порядки по ацетону, трииодиду и иону водорода в кинетическом уравнении

е. Рассчитайте константу скорости $k_{\rm H}$ для реакции с участием обычного ацетона (CH₃)₂CO, укажите ее размерность.

$$k_{\rm H}$$
 =

f. Рассчитайте константу скорости k_D для реакции с участием ацетона- d_6 , (CD₃)₂CO, укажите ее размерность, рассчитайте величину изотопного эффекта реакции, k_H/k_D .

 $k_{\rm D}$ = $k_{\rm H}/k_{\rm D}$ =

Фамилия:

g. Полученные вами кинетические и изотопные данные позволяют выяснить механизм реакции. Ниже приведены возможные элементарные стадии. Одна из стадий является лимитирующей (R.D.S.), тогда как во всех предшествующих ей стадиях быстро устанавливается квазиравновесие, смещенное в сторону реагентов.

Приведенную ниже таблицу заполните на основе *полученных вами* экспериментальных данных: кинетического уравнения (пункт d) и изотопного эффекта (пункт f). Для каждой стадии определите, согласуется ли с вашим кинетическим уравнением предположение о том, что эта стадия является лимитирующей. Если согласуется, то в первой пустой клетке для данной стадии поставьте галочку (✓), если не согласуется – знак X. Аналогично, укажите для каждой стадии, согласуется ли предположение о том, что эта стадия является лимитирующей, с определенным вами изотопным эффектом.

Стадия	R.D.S. согласуется (✔) с вашим кинетическим уравнением или нет (X)	R.D.S. согласуется (✔) с вашим изотопным эффектом или нет (X)
$HO^+ + H_3O^+ + H_2O$		
H^+ + H ₂ O + H ₃ O ⁺		
OH + 13 + 21 + 21		
H^+ + H ₂ O + H ₃ O ⁺		

44^{ая} МХО – Экспериментальный тур.

Инструкция (Задача 2)

- Буклет «Задача 2» включает 15 листов.
- У Вас есть 15 минут до начала экспериментальной работы, чтобы полностью прочитать буклет «Задача 2».
- На выполнение Задачи 2 Вам отводится 2 часа 45 минут. При планировании своей работы учтите, что одна из стадий эксперимента занимает 30 минут.
- Начинайте работу только после того, как прозвучит команда **START**. Вы должны немедленно прекратить работу после команды **STOP**. Если Вы продолжите работу в течение 5 минут после этого, Вы будете дисквалифицированы с нулевым результатом за весь экспериментальный тур. Вы должны оставаться на своем рабочем месте после команды **STOP**. Преподаватель подойдет к Вам и проверит рабочий стол. Вы должны предъявить ему (оставить на столе):
 - о буклет «Задача 2» с ответами;
 - о одну пластинку ТСХ в закрытом полиэтиленовом пакете с Вашим кодом;
 - о пузырек с надписью "Product".
- Вы обязаны соблюдать правила техники безопасности, принятые на МХО. Находять в лаборатории, Вы должны постоянно носить защитные очки или Ваши собственные очки. Заполняйте мерные пипетки только при помощи груши. При работе Вы можете использовать перчатки.
- При нарушении правил техники безопасности Вы получите только **ОДНО ПРЕДУПРЕЖДЕНИЕ**. При повторном нарушении Вы будете удалены из лаборатории с нулевым результатом за весь практический тур.
- Если у Вас возникли вопросы по технике безопасности или Вам нужно выйти в туалет, обратитесь к Вашему преподавателю.
- Вам разрешается работать только на своем рабочем месте.
- Записывайте ответы только выданной Вам ручкой. Не пишите карандашом.
- Используйте только выданный Вам калькулятор.
- Записывайте результаты только в отведенных для этого местах. Любые записи, сделанные в других местах, оцениваться не будут. Используйте оборотную сторону листов в качестве черновика.
- Выбрасывайте закрытые пузырьки с остатками растворов в контейнер подписанный "Used Vials".
- Выливайте не нужные более растворы в контейнер, подписанный "Liquid Waste"..
- Выбрасывайте осколки ампулы в контейнер, подписанный "Broken Glass Disposal".
- Вы можете заменить посуду или получить дополнительные реактивы без штрафа только один раз. За каждую последующую замену Вы будете оштрафованы 1 баллом из 40.
- В любой момент Вы можете попросить у преподавателя официальную английскую версию для уточнения непонятных формулировок.

18	2 4.00260 He 1.40	10 20.1797 Ne 1.50	8 39,948 Ar	1	83.80	X	4	2.10	1	(222.02)	2.20	118 (294)	onn				
	17	9 10 18.9984 20 F 0.64	4527 CI	0.23	0	Br	5 007 8 007		1	(209.99) (2	ł		Uus				
		8 9 15.9994 18 0 0.66	6 17 32.066 35		с. 	Se	2 53 177 60 17		85		1.67	292)	2		174.04	LU 1.72	103 (260.1) Lr
	16		· ***	1.10	è	As 1.20	5		84		1.55	4 	Uup	7	173.04	1.94	No (1)
	15	14.0	30.5		33	Ge	51 10 424 760	2	83			÷	 ⊑	7		1.72	
	14	6 12.011 C 0.77	14 28.0		32		50 118 710	-	82	2		114 (28			168	1.73	.10) (258.10) Fm Md
	13	5 10.811 B 0.89	13 26.9815 AI		31 69.723	Ga 1.35	49 114 819	1.67 1.67	81	204.383 T1	1.70	113 (284)	Uut	9	167		100 (257
		L		12	30 65.39	Zn 1.33	48	Cd 1.49	80	200.59	2 <u>0</u> 2	112 (285)	ы	67	164.930	1.74	99 (252.08) Es 2.03
				~ ~~	3.546	Cu 1.28	7 86.8	00.000 Ag 1.44		196.967	1,44		Rg	66	162.50	1.75 1.75	98 (251.08) Cf 1.99
		vc. Å		0	6934	Ni 1.24	06 AD				1 38	271)	S	[158.925	1.76	97 (247.07) Bk 1.72
		— Атомный вес Символ Ковалентный радиvс. Å		-		Co 1.25	45 46		~	192.217 1	1.36	- N	Mt			1.79	7.07) Cm 1.74
		 Атомный вес Символ Совалентный раз 		တ		Fe 1.24			22		1.35	Ç	sH	9		cu 2.04	·····
		* *	/ 	8	26 55.		44	2	76	0 0 1 0		10	Вh			5 m 1.80	
		1 1.00794 H 0.28		7	25 54.9381	Mn 1.37	43 /07 005)	n 1 n	75	186.207		107 (262.		9	15		94 (244
		ep 		9	24 51.9961	Cr 1.25	42 05.04	No 1.37	74	183.84 W	A	106 (263.12)	Sg		(144	1.83	93 (237.05) Np 1.55
		Атомный номер		0	23 50.9415	1.33	41 02 0067	+000-24 ND 1.43	73	180.948	43.4	105 (262.11)	a D	60	144.24	1.81	92 238.029 U 1.38
		Атомн		4	7.867	1.46	1 224			178.49		11)	ž		140.908	1.82	91 231.036 Pa 1.56
					N	Sc	39 40 88 0050 0		71 72				Ac-Lr		140.115 1	1.83	2.038 Th 1.80
		218 Be	050 Mg	e e		Ca	87 62 88 6		57-71			õ	Ra A 2.25			1.87	89 89 80 (227.03) 23% 7 0 23% 1.88
	4 T 8 2	9.012	12 24.3		40.(<u>×</u>	38		56	137.		88 (226	Er Z	57	136		89 (22)
-	1 1.00794 H 0.28	3 6.941 Li	11 22.9898 Na		19 39.0983		37 85 4678	α κ	55	132.905)	87 (223.02)	u 				
1		5	ი			4		2		(٥		2				

44^{ая} МХО – Экспериментальный тур

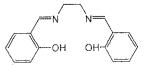
Kog: BLR

Фамилия:

,

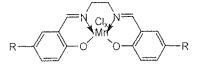
 \sim

Реактивы и оборудование (Задача 2)


Реактивы и материалы (соответствующие надписи на упаковках выделены жирным

<u>шрифтом в кавычках)</u>

	Risk-фpa3a ⁺	Safety-фразa ⁺
«(salen)H ₂ », ^а ~1.0 г ^b в пузырьке	R36/37/38	S26 S28A S37 S37/39 S45
«Мп(ООССН ₃) ₂ 4H ₂ O», ~1.9 г ^b в пузырьке	R36/37/38 R62 R63	S26 S37/39
1М раствор хлорида лития (LiCl) в этаноле,	R11 R36/38	S9 S16 S26
«Lithium chloride solution», 12 мл в		
бутылке	·	
Этанол, «Ethanol», 70 мл в бутылке	R11	S7 S16
Ацетон, «(CH₃)₂CO », 100 мл в бутылке	R11 R36 R66 R67	S9 S16 S26
«(salen*)MnCl _x », ^с ~32 мл раствора в		
бутылке с приблизительной концентрацией		
~3.5 мг/мл ^b		· · · · · · · · · · · · · · · · · · ·
Kl ₃ , ~0.010 М раствор в воде, ^ь 50 мл в		
бутылке, обозначенной «I ₂ ».		
«Ascorbic Acid», ~0.030 М раствор		
аскорбиновой кислоты в воде, ^b 20 мл в		
бутылке		
«1% Starch», раствор крахмала в воде, 2 мл		*
в бутылке		
«TLC plate» – одна пластинка для TCX		
(силикагель) 5 см × 10 см в закрытом		
полиэтиленовом пакете		


⁺ Смотрите страницу далее для расшифровки Risk- и Safety-фраз.

^а Формула (salen)H₂:

^b Точное значение указано на этикетке.

^с (salen*)MnCl_x (обе группы R одинаковые и могут быть H, или COOH, или SO₃H):

Код: BLR

Оборудование

Для общего использования:

• весы.

Для индивидуального использования:

- два штатива с лапками расположенных под тягой и подписанных вашим кодом;
- одна магнитная мешалка с подогревом;
- одна линейка (300 мм);
- один карандаш.

Набор оборудования №2 (подписан как «Kit #2»):

- две колбы Эрленмейера на 250 мл;
- один градуированный цилиндр объемом 50 mL;
- один овальный магнит (20 мм) для мешалки;
- одна фарфоровая воронка Хирша для фильтрования;
- бумажные фильтры для воронки Хирша и камеры для ТСХ;
- одна колба Бунзена (125 мл) для фильтрования под вакуумом;
- резиновый адаптер конической формы для фильтрования под вакуумом;
- одна пластиковая ледяная баня (0,5 л);
- одна стеклянная палочка;
- две пластиковые пипетки (1 мл) для переноса жидкостей (смотри рисунок справа);
- один пластиковый шпатель;
- один пустой пузырек с крышкой (4 мл) подписанный «Product» для синтезированного вещества.

Набор оборудования №3 (подписан как «Kit #3»):

- три пустых маленьких пузырька с крышкой (для растворов для TCX);
- десять капилляров (100 мм) для ТСХ;
- одно **часовое стекло** (для камеры TCX);
- один стакан (250 мл), используемый как камера для TCX;

Набор оборудования №4 (подписан как «Kit #4»):

• одна собранная и готовая для использования бюретка (25 мл) в штативе (под тягой);

Код: BLR

- одна маленькая пластиковая воронка для заполнения бюретки;
- четыре колбы Эрленмейера (125 мл);
- одна резиновая груша для заполнения пипеток;
- одна мерная пипетка на 10 мл;
- одна мерная пипетка на 5 мл.

Код: BLR

R- и S-фразы (Задача 2)

R11 Легковоспламеняющийся

R36/37/38 Вызывает раздражение глаз, органов дыхания и кожи

R62 Возможный раск дисфункции половых органов

R63 Возможный риск при беременности

R66 Постоянный контакт может вызвать растрескивание кожи

R67 Пары вызывают сонливость и головокружение

S7 Хранить плотно зактрытым

S9 Хранить в хорошо проветриваемом помещении

S16 Хранить в стороне от источников воспламенения

S26 В случае попадания в глаза немедленно промойте большим количеством воды и

обратитесь к врачу

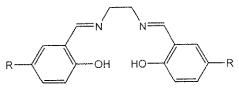
S28A При попадании на кожу промойте большим количеством воды

S37 Работайте в перчатках

S37/39 Работайте в перчатках и защитных очках/маске

S45 При несчастном случае и/или плохом самочувствии немедленно обратитесь к врачу

Фамилия:


Задача 2

22 балла

Синтез комплекса марганца с лигандом salen и определение формулы продукта

Α	B-i	B-ii	C-i	C-ii	Очки	Баллы
10	15	4	4	2	35	22

Комплексы ионов 3*d*-металлов с лигандом бис(салицилиден)этилендиамином (salen) используются в органическом синтезе как эффективные катализаторы разнообразных окислительно-восстановительных реакций.

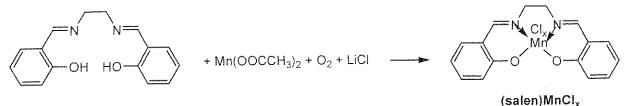
 $(salen)H_2, R = H$

(salen*)H₂, R = H, или СООН, или SO₃H

В комплексах с salen стабилизируются различные степени окисления 3*d*-элементов. В частности, в зависимости от условий реакции получения, ионы марганца могут иметь степени окисления от +2 до +5.

В этой задаче вы должны синтезировать комплекс ионов марганца с salen по реакции ацетата Mn(II) с (salen) H_2 в этаноле на воздухе в присутствии LiCl. В таких условиях вы можете получить комплекс состава (salen) $MnCl_x$, где х может принимать значения 0, 1, 2 или 3.

Вам потребуется: i) определить массу полученного продукта, ii) с помощью ТСХ охарактеризовать его чистоту и iii) определить степень окисления марганца в комплексе с использованием йодометрического окислительно-восстановительного титрования. Для титрования вы будете использовать раствор выданного Вам комплекса, являющегося аналогом вашего продукта, (salen*)MnCl_x, в котором марганец имеет такую же степень окисления, что и вашем продукте, а заместителем R в бензольных кольцах может быть H, СООН или SO₃H.


Код: BLR

Перед тем, как приступить к работе, внимательно прочитайте условие задачи до конца и правильно спланируйте свою работу. Учтите, что для того, чтобы уложиться в выделенное время, некоторые операции нужно выполнять параллельно.

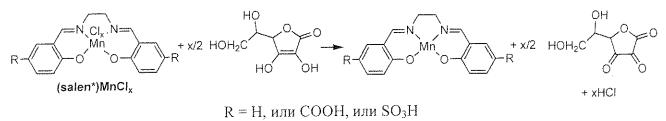
Фамилия:

Методика синтеза:

А. Синтез комплекса (salen)MnCl_x

- Поместите 2-3 кристаллика (salen)Н₂ в маленький пузырек для последующего использования в TCX эксперименте.
- Перенесите весь выданный Вам образец (salen)H₂ в 250 мл колбу Эрленмеера, поместите туда магнит для мешалки и добавьте 35 мл абсолютного этанола.
- 3) Поставьте колбу на мешалку с подогревом. Нагревайте содержимое колбы при постоянном перемешивании до полного растворения (salen)H₂ (обычно растворение наступает тогда, когда смесь нагревается почти до температуры кипения этанола). Затем снизьте температуру нагрева реакционной смеси для поддержания смеси в состоянии, близким к кипению. Не допускайте кипения смеси, горлышко колбы не должно быть горячим. Если горлышко колбы окажется горячим для удерживания рукой, для переноски колбы используйте свернутую бумажную салфетку.
- 4) Снимите колбу с плитки и добавьте в нее весь выданный Вам образец Mn(OOCCH₃)₂·4H₂O. Смесь должна окраситься в темно-коричневый цвет. Сразу же верните колбу на мешалку и продолжайте нагрев с перемешиванием в течение 15 минут. Не допускайте кипения смеси, горлышко колбы не должно быть горячим.
- 5) Снимите колбу с плитки и добавьте в нее весь выданный 1M раствор LiCl в этаноле (12 мл, взят в избытке). Верните колбу на мешалку и продолжайте нагрев с перемешиванием в течение 10 минут. Не допускайте кипения смеси, горлышко колбы не должно быть горячим.
- 6) После этого снимите колбу с мешалки и поставьте в баню со льдом для кристаллизации на 30 минут. Каждые 5 минут аккуратно потирайте стенки внутри колбы ниже уровня жидкости стеклянной палочкой для ускорения кристаллизации комплекса (salen)MnCl_x. Первые кристаллы могут появиться в самом начале охлаждения или через 10-15 минут.
- 7) Используя вакуумную линию под тягой (соответствующий кран помечен как "Vacuum"), фильтровальную бумагу, маленькую воронку Хирша и колбу Бунзена, отфильтруйте образовавшийся осадок. С помощью пипетки промойте осадок на фильтре несколькими каплями ацетона, не отсоединяя вакуум. Оставьте осадок на фильтре (не отсоединяя вакуум) на 10-15 минут для высыхания.
- Взвесьте пустой пузырек с надписью "Product" и запишите его массу. Перенесите в этот пузырек высушенный твердый продукт с фильтра и взвесьте его. Запишите массу пузырька с продуктом, рассчитайте массу продукта, *m_p*, и запишите ее. Также

Код: BLR


запишите (с этикеток) массы реактивов, использованных в синтезе: (salen) H_2 , m_S , и Mn(OOCCH₃)₂·4H₂O, m_{Mn} .

9) Поместите пузырек с продуктом в пакетик с застежкой.

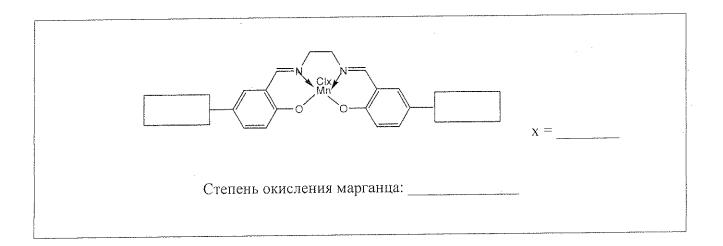
Масса пустого пузырька для продукта:		r
Масса пузырька с высушенным продуктом:		
Масса продукта, <i>m_p</i> :		_ Г
Масса образца (salen)H ₂ (перепишите с этикетки пузырька), <i>m</i> _S :	- Marine Ma	Г [.]
Масса Мп(ООССН ₃) ₂ ·4H ₂ O (перепишите с этикетки пузырька), m_{Mn} :	1110-00-1470	ľ

Фамилия:

В. Объемный анализ выданного образца (salen*)MnCl_x

Работа с резиновой грушей при заполнении пипеток

- 1) Наденьте грушу на пипетку.
- 2) Сильно сожмите резиновую грушу.
- Для того, чтобы набрать жидкость в пипетку, нажмите клапан со стрелкой, направленной вверх.
- Чтобы слить жидкость из пипетки, нажмите клапан со стрелкой, направленной вниз.
 Примечание: Пипетки и бюретку можно использовать без дополнительной подготовки.
- С помощью мерной пипетки перенесите 10.00 мл выданного вам раствора (salen*)MnCl_x в колбу Эрленмейера (объемом 125 мл).
- К этому раствору с помощью мерной пипетки добавьте 5.00 мл раствора аскорбиновой кислоты и тщательно перемешайте. Дайте полученному раствору постоять 3-4 минуты, не более.
- 3) После этого, чтобы предотвратить окисление аскорбиновой кислоты кислородом, <u>сразу же</u> оттитруйте реакционную смесь раствором KI₃, добавив в качестве индикатора 5 капель 1%-ного раствора крахмала (1 % Starch). В конечной точке титрования голубая или зелено-голубая окраска раствора должна сохраняться как минимум 30 секунд.
- 4) Проведите 1-2 повторных титрования для повышения точности ваших результатов.
 Запишите результаты работы в таблицу:

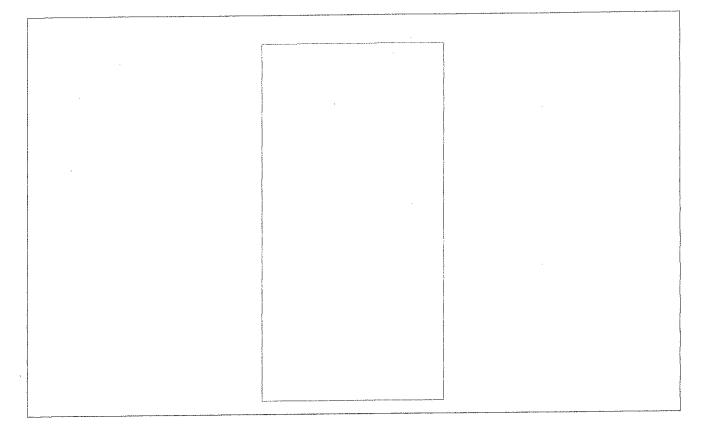

№ титрования	Начальное показание бюретки с раствором	Конечное показание бюретки с раствором	Израсходованный на титрование объем
	KI ₃ , мл	KI ₃ , мл	раствора КІ ₃ , мл
1			
2			
3			

i. Укажите объем (какого-то одного из титрований или средний для нескольких титрований) раствора KI₃, который вы будете использовать для вычисления молярной массы (salen*)MnCl_x :

Объем раствора KI ₃ для вычислений:	МЛ
	s
Концентрация (salen*)MnCl _x (указана на этикетке пузырька):	мг/мл
Концентрация аскорбиновой кислоты (указана на этикетке пузырька)	M

Код: BLR

іі. Используя результаты титрования и дополнительные данные из таблицы, приведенной ниже, определите величину x, степень окисления марганца и группу-заместитель R в salen (R = H, COOH, SO₃H). Запишите ответы в соответствующих местах ниже:



R	Х	Отношение теоретической молярной массы к х, $\frac{M}{x}$, г/моль	
Н	1	357	
Н	2	196	
Н	3	143	
СООН	1	445	
СООН	2	240	
СООН	3	172	
SO ₃ H	1	517	
SO ₃ H	2	276	
SO ₃ H	3	196	

С. Тонкослойная хроматография (salen)MnCl_x

- В маленький пузырек поместите несколько кристаллов синтезированного вами (salen)MnCl_x и с помощью пластиковой пипетки добавьте несколько капель абсолютного этанола.
- В маленький пузырек, в который Вы ранее (п. 1а) поместили несколько кристалликов выданного вам (salen)H₂, с помощью пластиковой пипетки добавьте несколько капель абсолютного этанола.
- Если это нужно, ножницами (попросите у лаборанта) обрежьте пластинку для TCX так, чтобы она соответствовала по высоте стакану для TCX.
- 4) Большой кружок фильтровальной бумаги поместите в стакан для TCX возле стенки (если бумага выступает по высоте, подогните ее или обрежьте ножницами). Бумага необходима для насыщения камеры парами этанола. Налейте в камеру этанол так, чтобы он смочил бумагу и образовал на дне слой высотой 3-4 мм. Накройте стакан часовым стеклом.
- 5) На пластинке для ТСХ нанесите линию старта.
- 6) С помощью капилляров нанесите образцы обоих растворов.
- Поместите пластинку TCX в стакан, накройте часовым стеклом. Проводите элюирование в течение 10-15 мин.
- После окончания элюирования карандашом отметьте положения фронта растворителя и окрашенных пятен на пластинке TCX.
- 9) Высушите пластинку TCX на воздухе и <u>поместите ее в полиэтиленовый пакет с</u> застежкой.
- 10) Рассчитайте значения R_f для (salen) H_2 и для (salen) $MnCl_x$.

і. Зарисуйте ниже схему своей пластинки для ТСХ.

іі. Рассчитайте и запишите значения R_f для (salen) H_2 и (salen) $MnCl_x$

R_{f} , (salen)H ₂ :		
R_f , (salen)MnCl _x :		

После окончания работы:

- a) слейте все жидкие отходы в емкость, подписанную «Liquid Waste»;
- b) положите использованные пузырьки в емкость, подписанную «Broken Glass Disposal»;
- с) положите использованное стеклянное оборудование в соответствующие коробки,
- подписанные "Kit #2", "Kit #3" и "Kit #4".